

Lecture 7

Heaps, Heapsort, Stable sorting,
Optimality of Heapsort/Mergesort
(revisited)
CS 161 Design and Analysis of Algorithms Ioannis Panageas

Heapsort

Heapsort

Consider the following version of Selection Sort (sometimes called Max sort)

```
def maxSort(A,n):
    for k = n-1 downto 1
    find j such that A[j] == max(A[0],A[1],..., A[k])
    A[j]}\leftrightarrow\textrm{A}[\textrm{k}
```


Heapsort

Consider the following version of Selection Sort (sometimes called Max sort)

```
def maxSort(A,n):
    for k = n-1 downto 1
        find j such that A[j] == max(A[0],A[1],..., A[k])
        A[j] \leftrightarrowA[k]
```

A straightforward implementation requires $O\left(n^{2}\right)$ time, because of the time spent repeatedly finding the maximum of the first k items.

Heapsort

Consider the following version of Selection Sort (sometimes called Max sort)

```
def maxSort(A,n):
    for k = n-1 downto 1
    find j such that A[j] == max(A[0],A[1],..., A[k])
    A[j] \leftrightarrowA[k]
```

A straightforward implementation requires $O\left(n^{2}\right)$ time, because of the time spent repeatedly finding the maximum of the first k items.

But we can speed this up by using a binary heap.

Priority Queues and Heaps

Priority Queues and Heaps

- Priority Queue

Priority Queues and Heaps

- Priority Queue
- Abstract data type

Priority Queues and Heaps

- Priority Queue
- Abstract data type
- Collection of items.

Priority Queues and Heaps

- Priority Queue
- Abstract data type
- Collection of items.
- Each item has an associated key, which corresponds to a priority.

Priority Queues and Heaps

- Priority Queue
- Abstract data type
- Collection of items.
- Each item has an associated key, which corresponds to a priority.
- Supports the following operations

Priority Queues and Heaps

- Priority Queue
- Abstract data type
- Collection of items.
- Each item has an associated key, which corresponds to a priority.
- Supports the following operations
- Insert an item with a given key

Priority Queues and Heaps

- Priority Queue
- Abstract data type
- Collection of items.
- Each item has an associated key, which corresponds to a priority.
- Supports the following operations
- Insert an item with a given key
- Delete an item

Priority Queues and Heaps

- Priority Queue
- Abstract data type
- Collection of items.
- Each item has an associated key, which corresponds to a priority.
- Supports the following operations
- Insert an item with a given key
- Delete an item
- Select the item with the most urgent priority in the priority queue.

Priority Queues and Heaps

- Priority Queue
- Abstract data type
- Collection of items.
- Each item has an associated key, which corresponds to a priority.
- Supports the following operations
- Insert an item with a given key
- Delete an item
- Select the item with the most urgent priority in the priority queue.
- Most urgent priority may correspond to the lowest key value or to the highest key value, depending on the application.

Binary Heaps

Binary Heaps

- Specific implementation of priority queue

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.
- The array represents a binary tree in level order (breadth-first order).

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.
- The array represents a binary tree in level order (breadth-first order).
- Can be max-heap or min-heap

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.
- The array represents a binary tree in level order (breadth-first order).
- Can be max-heap or min-heap
- In a max-heap, large key values represent more urgent priorities

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.
- The array represents a binary tree in level order (breadth-first order).
- Can be max-heap or min-heap
- In a max-heap, large key values represent more urgent priorities
- In a min-heap, small key values represent more urgent priorities

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.
- The array represents a binary tree in level order (breadth-first order).
- Can be max-heap or min-heap
- In a max-heap, large key values represent more urgent priorities - In a min-heap, small key values represent more urgent priorities
- In this introduction, we will be using a max-heap.

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.
- The array represents a binary tree in level order (breadth-first order).
- Can be max-heap or min-heap
- In a max-heap, large key values represent more urgent priorities
- In a min-heap, small key values represent more urgent priorities
- In this introduction, we will be using a max-heap.
- Heap invariant for max-heaps: For any item vother than the root,

$$
\operatorname{key}(\operatorname{parent}(v)) \geq \operatorname{key}(v)
$$

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.
- The array represents a binary tree in level order (breadth-first order).
- Can be max-heap or min-heap
- In a max-heap, large key values represent more urgent priorities
- In a min-heap, small key values represent more urgent priorities
- In this introduction, we will be using a max-heap.
- Heap invariant for max-heaps: For any item v other than the root,

$$
\text { key }(\operatorname{parent}(v)) \geq \operatorname{key}(v)
$$

- In a min-heap, the direction of the inequality is reversed.

Binary Heaps

- Specific implementation of priority queue
- Items are stored in an array.
- The array represents a binary tree in level order (breadth-first order).
- Can be max-heap or min-heap
- In a max-heap, large key values represent more urgent priorities
- In a min-heap, small key values represent more urgent priorities
- In this introduction, we will be using a max-heap.
- Heap invariant for max-heaps: For any item v other than the root,

$$
\operatorname{key}(\operatorname{parent}(v)) \geq \operatorname{key}(v)
$$

- In a min-heap, the direction of the inequality is reversed.
- In our examples, items are integers, key is the integer value

Viewing the array as a binary tree

Viewing the array as a binary tree

83	79	27	36	23	18	15	14	31
20								
0	1	2	3	4	5	6	7	8

Viewing the array as a binary tree

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

Viewing the array as a binary tree

- Root is $H[0]$

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

Viewing the array as a binary tree

- Root is $H[0]$
- Left child of $H[i]$ is $H[2 i+1]$ (provided $2 i+1<n$, where $n=H . s i z e)$

Viewing the array as a binary tree

- Root is $H[0]$
- Left child of $H[i]$ is $H[2 i+1]$ (provided $2 i+1<n$, where $n=H$. size)
- Right child of $H[i]$ is $H[2 i+2]$ (provided $2 i+2<n$)

83	79	27	36	23	18	15	14	31	20
0	1	2	3	4	5	6	7	8	9

Viewing the array as a binary tree

- Root is $H[0]$
- Left child of $H[i]$ is $H[2 i+1]$ (provided $2 i+1<n$, where $n=H . s i z e)$
- Right child of $H[i]$ is $H[2 i+2]$ (provided $2 i+2<n$)
- Parent of $H[i]$ is $H[L(i-1) / 2\rfloor]$ (provided $i>0$)

83	79	27	36	23	18	15	14	31	20

Heap operations in a max-heap:

Heap operations in a max-heap:

Heap operations in a max-heap:

- FindMax (H): Find maximum item in the heap

Heap operations in a max-heap:

- FindMax (H): Find maximum item in the heap
- ExtractMax(H): Find maximum item and delete it from the heap

Heap operations in a max-heap:

- FindMax (H): Find maximum item in the heap
- ExtractMax(H): Find maximum item and delete it from the heap
- Insert(H,x): Insert the new item x in the heap

Heap operations in a max-heap:

- FindMax (H): Find maximum item in the heap
- ExtractMax(H): Find maximum item and delete it from the heap
- Insert(H, x): Insert the new item x in the heap
- Delete (H,i): Delete the item at location i from the heap

FindMax: Find maximum item in the heap

FindMax: Find maximum item in the heap

FindMax: Find maximum item in the heap

Findmax is easy: just report the value at the root.

FindMax: Find maximum item in the heap

Findmax is easy: just report the value at the root.

```
def FindMax(H):
    return H[0]
```


Helper functions

Helper functions

- Except for FindMax, the binary heap operations require some data movement.

Helper functions

- Except for FindMax, the binary heap operations require some data movement.
- The heap invariant must be preserved after each operation.

Helper functions

- Except for FindMax, the binary heap operations require some data movement.
- The heap invariant must be preserved after each operation.
- We define two helper functions.

Helper functions

- Except for FindMax, the binary heap operations require some data movement.
- The heap invariant must be preserved after each operation.
- We define two helper functions.
- SiftUp(H,i): Move the item at location i up to its correct position by repeatedly swapping the item with its parent, as necessary.

Helper functions

- Except for FindMax, the binary heap operations require some data movement.
- The heap invariant must be preserved after each operation.
- We define two helper functions.
- SiftUp(H,i): Move the item at location i up to its correct position by repeatedly swapping the item with its parent, as necessary.
- SiftDown(H,i): Move the item at location i down to its correct position by repeatedly swapping the item with the child having the larger key, as necessary.

Helper functions

- Except for FindMax, the binary heap operations require some data movement.
- The heap invariant must be preserved after each operation.
- We define two helper functions.
- SiftUp(H,i): Move the item at location i up to its correct position by repeatedly swapping the item with its parent, as necessary.
- SiftDown(H,i): Move the item at location i down to its correct position by repeatedly swapping the item with the child having the larger key, as necessary.
[GT] calls these "up-heap bubbling" and "down-heap bubbling"

SiftUp: Sift an item up to its correct position

SiftUp: Sift an item up to its correct position

SiftUp: Sift an item up to its correct position

```
def SiftUp(H,i):
    parent = (i-1)/2;
    if (i > 0) and (H[parent].key < H[i].key):
    H[i] }\leftrightarrowH[parent
    SiftUp(H,parent)
```


SiftUp: Sift an item up to its correct position

```
def SiftUp(H,i):
    parent = (i-1)/2;
    if (i > 0) and (H[parent].key < H[i].key):
    H[i] }\leftrightarrowH[parent
    SiftUp(H,parent)
```

Analysis: at most 1 comparison at each level, so total time is $O(\log n)$

SiftDown: Sift an item down to its correct position

SiftDown: Sift an item down to its correct position

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

SiftDown: Sift an item down to its correct position

```
def SiftDown(H,i):
```

```
n = H.size // number of item in heap
left = 2i+1; right = 2i+2
if (right < n) and (H[right].key > H[left].key)
    largerChild = right
else largerChild = left
if (largerchild < n) and (H[i].key < H[largerChild].key)
    H[i] }\leftrightarrow H[largerchild
    SiftDown(H,largerchild)
```


CompSci 161—Spring 2022—(C). B. Dillencourt—University of California, Irvine

SiftDown: Sift an item down to its correct position

```
def SiftDown(H,i):
n = H.size // number of item in heap
left = 2i+1; right = 2i+2
if (right < n) and (H[right].key > H[left].key)
    largerChild = right
else largerChild = left
if (largerchild < n) and (H[i].key < H[largerChild].key)
    H[i] }\leftrightarrowH[largerchild]
    SiftDown(H,largerchild)
```

Analysis: at most 2 comparisons at each level, so total time is $O(\log n)$

CompSci 161—Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

Insert: Insert the new item x

Insert: Insert the new item x

Insert: Insert the new item x

```
def Insert(H,x):
    H.size = H.size+1 // increment number of items
    k = H.size-1 //index of last position
H[k] = x //insert x in last position
SiftUp(H,k)
```


Insert: Insert the new item x

```
def Insert(H,x):
    H.size = H.size+1 // increment number of items
    k = H.size-1 //index of last position
H[k] = x //insert x in last position
SiftUp(H,k)
```

Analysis: Siftup time dominates, so total time is $O(\log n)$

Insert: Insert the new item x

```
def Insert(H,x):
    H.size = H.size+1 // increment number of items
    k = H.size-1 //index of last position
    H[k] = x //insert x in last position
    SiftUp(H,k)
```

Analysis: Siftup time dominates, so total time is $O(\log n)$

```
Insert(H,81)
```


Insert: Insert the new item x

```
def Insert(H,x):
    H.size = H.size+1 // increment number of items
    k = H.size-1 //index of last position
    H[k] = x //insert x in last position
    SiftUp(H,k)
```

Analysis: Siftup time dominates, so total time is $O(\log n)$
Insert (H,81)

Insert: Insert the new item x

```
def Insert(H,x):
    H.size = H.size+1 // increment number of items
    k = H.size-1 //index of last position
    H[k] = x //insert x in last position
    SiftUp(H,k)
```

Analysis: Siftup time dominates, so total time is $O(\log n)$
Insert (H,81)

Insert: Insert the new item x

```
def Insert(H,x):
    H.size = H.size+1 // increment number of items
    k = H.size-1 //index of last position
    H[k] = x //insert x in last position
    SiftUp(H,k)
```

Analysis: Siftup time dominates, so total time is $O(\log n)$

```
Insert(H,81)
```


Insert: Insert the new item x

```
def Insert(H,x):
    H.size = H.size+1 // increment number of items
    k = H.size-1 //index of last position
    H[k] = x //insert x in last position
    SiftUp(H,k)
```

Analysis: Siftup time dominates, so total time is $O(\log n)$

```
Insert(H,81)
```


Insert: Insert the new item x

```
def Insert(H,x):
    H.size = H.size+1 // increment number of items
    k = H.size-1 //index of last position
    H[k] = x //insert x in last position
    SiftUp(H,k)
```

Analysis: Siftup time dominates, so total time is $O(\log n)$
Insert (H,81)

Delete: Delete the item at location i

Delete: Delete the item at location i

CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

Delete: Delete the item at location i

```
def Delete(H,i):
    k = H.size-1 //index of last position
    H[i] = H[k] // overwrite item being deleted with
    element in last position
    H.size = H.size-1 // decrement number of item
    SiftUp(H,i) // either SiftUp or SiftDown will do nothing
    SiftDown(H,i)
```


Delete: Delete the item at location i

```
def Delete(H,i):
    k = H.size-1 //index of last position
    H[i] = H[k] // overwrite item being deleted with
    element in last position
    H.size = H.size-1 // decrement number of item
    SiftUp(H,i) // either SiftUp or SiftDown will do nothing
    SiftDown(H,i)
```

Analysis: Siftup/siftdown time dominates, so total time is $O(\log n)$

Delete: Delete the item at location i

```
def Delete(H,i):
    k = H.size-1 //index of last position
    H[i] = H[k] // overwrite item being deleted with
    element in last position
    H.size = H.size-1 // decrement number of item
    SiftUp(H,i) // either SiftUp or SiftDown will do nothing
    SiftDown(H,i)
```

Analysis: Siftup/siftdown time dominates, so total time is $O(\log n)$
Delete(H,3)

Delete: Delete the item at location i

```
def Delete(H,i):
    k = H.size-1 //index of last position
    H[i] = H[k] // overwrite item being deleted with
    element in last position
    H.size = H.size-1 // decrement number of item
    SiftUp(H,i) // either SiftUp or SiftDown will do nothing
    SiftDown(H,i)
```

Analysis: Siftup/siftdown time dominates, so total time is $O(\log n)$
Delete(H,3)

Delete: Delete the item at location i

```
def Delete(H,i):
    k = H.size-1 //index of last position
    H[i] = H[k] // overwrite item being deleted with
    element in last position
    H.size = H.size-1 // decrement number of item
    SiftUp(H,i) // either SiftUp or SiftDown will do nothing
    SiftDown(H,i)
```

Analysis: Siftup/siftdown time dominates, so total time is $O(\log n)$
Delete(H,3)

Delete: Delete the item at location i

```
def Delete(H,i):
    k = H.size-1 //index of last position
    H[i] = H[k] // overwrite item being deleted with
    element in last position
    H.size = H.size-1 // decrement number of item
    SiftUp(H,i) // either SiftUp or SiftDown will do nothing
    SiftDown(H,i)
```

Analysis: Siftup/siftdown time dominates, so total time is $O(\log n)$
Delete(H,3)

Delete: Delete the item at location i

```
def Delete(H,i):
    k = H.size-1 //index of last position
    H[i] = H[k] // overwrite item being deleted with
    element in last position
    H.size = H.size-1 // decrement number of item
    SiftUp(H,i) // either SiftUp or SiftDown will do nothing
    SiftDown(H,i)
```

Analysis: Siftup/siftdown time dominates, so total time is $O(\log n)$
Delete(H,3)

ExtractMax: Find maximum item and delete it

ExtractMax: Find maximum item and delete it

ExtractMax: Find maximum item and delete it

```
def ExtractMax(H):
    x = H[0]
    Delete(H,0)
    return x
```


ExtractMax: Find maximum item and delete it

```
def ExtractMax(H):
    x = H[0]
    Delete(H,0)
    return x
```

Analysis: Delete time dominates, so total time is $O(\log n)$

Constructing a heap

Constructing a heap

How do we efficiently construct a brand-new heap storing n given item?

Constructing a heap

How do we efficiently construct a brand-new heap storing n given item?

If we insert the items one at a time, time spent on k th insertion is $O(\log k)$.

Constructing a heap

How do we efficiently construct a brand-new heap storing n given item?

If we insert the items one at a time, time spent on k th insertion is $O(\log k)$.

So total time is

$$
O\left(\sum_{k=1}^{n-1} \log k\right)=O(n \log n)
$$

Constructing a heap

How do we efficiently construct a brand-new heap storing n given item?

If we insert the items one at a time, time spent on k th insertion is $O(\log k)$.

So total time is

$$
O\left(\sum_{k=1}^{n-1} \log k\right)=O(n \log n)
$$

There is a better way that only requires $O(n)$ time...

Constructing a heap in $O(n)$ time

Constructing a heap in $O(n)$ time

1. Put the data in H, in arbitrary order. (So H stores the correct data, but does not satisfy the heap invariant.)

Constructing a heap in $O(n)$ time

1. Put the data in H, in arbitrary order. (So H stores the correct data, but does not satisfy the heap invariant.)
2. Run the following Heapify function.
```
def heapify(H,n)
\[
\begin{gathered}
\text { for } i=n-1 \text { down to } 0: \\
\text { } \operatorname{SiftDown~}(H, i)
\end{gathered}
\]
```


Constructing a heap in $O(n)$ time

1. Put the data in H, in arbitrary order. (So H stores the correct data, but does not satisfy the heap invariant.)
2. Run the following Heapify function.
```
def heapify(H,n)
\[
\begin{gathered}
\text { for } i=n-1 \text { down to } 0 \text { : } \\
\text { } \operatorname{SiftDown~}(H, i)
\end{gathered}
\]
```

The code given above can be improved: We can start at $\mathrm{i}=\lfloor(\mathrm{n}-2) / 2\rfloor$ (or equivalently, $\mathrm{i}=\lfloor\mathrm{n} / 2\rfloor-1$), rather than $i=n-1$.

Heapify example

$\begin{array}{llllllll}13 & 23 & 18 & 94 & 42 & 12 & 37 & 81 \\ 52 & 56\end{array}$

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

Heapify example, continued

$\begin{array}{llllllll}13 & 23 & 18 & 94 & 42 & 12 & 37 & 81 \\ 52 & 56\end{array}$

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

Heapify example, continued

$\begin{array}{llllllll}13 & 23 & 18 & 94 & 42 & 12 & 37 & 81 \\ 52 & 56\end{array}$

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

Heapify example, continued

$\begin{array}{lllllll}13 & 23 & 18 & 94 & 42 & 12 & 37 \\ 81 & 52 & 56\end{array}$

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

Heapify example, continued

$\begin{array}{llllllll}13 & 23 & 18 & 94 & 42 & 12 & 37 & 81 \\ 52 & 56\end{array}$

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

Heapify example, continued

$\begin{array}{lllllll}13 & 23 & 18 & 94 & 42 & 12 & 37 \\ 81 & 52 & 56\end{array}$

CompSci 161—Spring 2022-(C)M. B. Dillencourt—University of California, Irvine

Analysis of heap construction algorithm using Heapify

Analysis of heap construction algorithm using Heapify

Algorithm heapify(H, n) ;
for $\mathrm{i}=\mathrm{n}-1$ down to 0 :
SiftDown(H,i)

Analysis of heap construction algorithm using Heapify

$$
\begin{aligned}
& \text { Algorithm heapify }(H, n) \text {; } \\
& \text { for i }=\text { n-1 down to } 0: \\
& \operatorname{SiftDown}(H, i)
\end{aligned}
$$

- Correctness: After $\operatorname{SiftDown}(\mathrm{H}, \mathrm{i})$ is executed, subtree rooted at node i satisfies heap invariant. (Can show by induction).

Analysis of heap construction algorithm using Heapify

$$
\begin{aligned}
& \text { Algorithm heapify }(H, n) ; \\
& \text { for } i=n-1 \text { down to } 0: \\
& \operatorname{SiftDown}(H, i)
\end{aligned}
$$

- Correctness: After $\operatorname{SiftDown}(\mathrm{H}, \mathrm{i})$ is executed, subtree rooted at node i satisfies heap invariant. (Can show by induction).
- Running time: Heapify runs in $O(n)$ time. We will prove this on the next slide.

Proof that Heapify runs in $O(n)$ time

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\sum_{j=0}^{d} 2(d-j) 2^{j}
$$

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\sum_{j=0}^{d} 2(d-j) 2^{j}=2 d \sum_{j=0}^{d} 2^{j}-2 \sum_{j=0}^{d} j 2^{j}
$$

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\begin{aligned}
\sum_{j=0}^{d} 2(d-j) 2^{j} & =2 d \sum_{j=0}^{d} 2^{j}-2 \sum_{j=0}^{d} j 2^{j} \\
& =2 d\left(2^{d+1}-1\right)-2\left[(d-1) 2^{d+1}+2\right]
\end{aligned}
$$

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\begin{aligned}
\sum_{j=0}^{d} 2(d-j) 2^{j} & =2 d \sum_{j=0}^{d} 2^{j}-2 \sum_{j=0}^{d} j 2^{j} \\
& =2 d\left(2^{d+1}-1\right)-2\left[(d-1) 2^{d+1}+2\right] \\
& =2 d 2^{d+1}-2 d-2 d 2^{d+1}+2 \cdot 2^{d+1}-4
\end{aligned}
$$

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\begin{aligned}
\sum_{j=0}^{d} 2(d-j) 2^{j} & =2 d \sum_{j=0}^{d} 2^{j}-2 \sum_{j=0}^{d} j 2^{j} \\
& =2 d\left(2^{d+1}-1\right)-2\left[(d-1) 2^{d+1}+2\right] \\
& =2 d 2^{d+1}-2 d-2 d 2^{d+1}+2 \cdot 2^{d+1}-4 \\
& =4 \cdot 2^{d}-2 d-4
\end{aligned}
$$

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\begin{aligned}
\sum_{j=0}^{d} 2(d-j) 2^{j} & =2 d \sum_{j=0}^{d} 2^{j}-2 \sum_{j=0}^{d} j 2^{j} \\
& =2 d\left(2^{d+1}-1\right)-2\left[(d-1) 2^{d+1}+2\right] \\
& =2 d 2^{d+1}-2 d-2 d 2^{d+1}+2 \cdot 2^{d+1}-4 \\
& =4 \cdot 2^{d}-2 d-4 \\
& <4 \cdot 2^{d}
\end{aligned}
$$

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\begin{aligned}
\sum_{j=0}^{d} 2(d-j) 2^{j} & =2 d \sum_{j=0}^{d} 2^{j}-2 \sum_{j=0}^{d} j 2^{j} \\
& =2 d\left(2^{d+1}-1\right)-2\left[(d-1) 2^{d+1}+2\right] \\
& =2 d 2^{d+1}-2 d-2 d 2^{d+1}+2 \cdot 2^{d+1}-4 \\
& =4 \cdot 2^{d}-2 d-4 \\
& <4 \cdot 2^{d} \leq 4 n
\end{aligned}
$$

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\begin{aligned}
\sum_{j=0}^{d} 2(d-j) 2^{j} & =2 d \sum_{j=0}^{d} 2^{j}-2 \sum_{j=0}^{d} j 2^{j} \\
& =2 d\left(2^{d+1}-1\right)-2\left[(d-1) 2^{d+1}+2\right] \\
& =2 d 2^{d+1}-2 d-2 d 2^{d+1}+2 \cdot 2^{d+1}-4 \\
& =4 \cdot 2^{d}-2 d-4 \\
& <4 \cdot 2^{d} \leq 4 n=O(n)
\end{aligned}
$$

Proof that Heapify runs in $O(n)$ time

- Suppose the tree has n nodes and d levels (so $2^{d} \leq n<2^{d+1}$).
- If node i is at level j, $\operatorname{SiftDown(H,i)~needs~} \leq 2(d-j)$ comparisons.
- There are at most 2^{j} nodes at level j.
- So total number of comparisons is no more than:

$$
\begin{aligned}
\sum_{j=0}^{d} 2(d-j) 2^{j} & =2 d \sum_{j=0}^{d} 2^{j}-2 \sum_{j=0}^{d} j 2^{j} \\
& =2 d\left(2^{d+1}-1\right)-2\left[(d-1) 2^{d+1}+2\right] \\
& =2 d 2^{d+1}-2 d-2 d 2^{d+1}+2 \cdot 2^{d+1}-4 \\
& =4 \cdot 2^{d}-2 d-4 \\
& <4 \cdot 2^{d} \leq 4 n=O(n)
\end{aligned}
$$

So heap can be constructed using $O(n)$ comparisons.

Heapsort: version based on Max Sort

Heapsort: version based on Max Sort

```
def heapsort(A,n):
    heapify(A,n) // form max heap using array A
    for k = n-1 down to 1:
        A[k] = ExtractMax(A)
```


Heapsort: version based on Max Sort

CompSci 161—Spring 2022-Ⓜ. B. Dillencourt—University of California, Irvine

Heapsort example

Sort: 13231894421237815256

Heapify:

Heapsort example, continued

Heapsort example, continued

Heapsort example, continued

Exercise: Finish this example.

Analysis of Heapsort

Analysis of Heapsort

- Storage: $O(1)$ extra space (in place)

Analysis of Heapsort

- Storage: $O(1)$ extra space (in place)
- Time:

Analysis of Heapsort

- Storage: $O(1)$ extra space (in place)
- Time:
- Heapify: $O(n)$

Analysis of Heapsort

- Storage: $O(1)$ extra space (in place)
- Time:
- Heapify: $O(n)$
- All calls to ExtractMax:

$$
\sum_{k=1}^{n-1} O(\log (k+1))=O(n \log n)
$$

Analysis of Heapsort

- Storage: $O(1)$ extra space (in place)
- Time:
- Heapify: $O(n)$
- All calls to ExtractMax:

$$
\sum_{k=1}^{n-1} O(\log (k+1))=O(n \log n)
$$

- Hence total time is $O(n \log n)$.

Heapsort: Alternate version

Heapsort: Alternate version

- Uses a min-heap (instead of a max-heap)

Heapsort: Alternate version

- Uses a min-heap (instead of a max-heap)
- Output items in sorted order rather than storing them back in the array

Heapsort: Alternate version

- Uses a min-heap (instead of a max-heap)
- Output items in sorted order rather than storing them back in the array

```
def heapsort(A,n):
    heapify(A,n) // Form min heap
    for k = 1 to n:
        x = ExtractMin(A)
        output(x)
```


Heapsort: Alternate version

- Uses a min-heap (instead of a max-heap)
- Output items in sorted order rather than storing them back in the array

```
def heapsort(A,n):
    heapify(A,n) // Form min heap
    for k = 1 to n:
        x = ExtractMin(A)
        output(x)
```

- Same analysis as previous version: $O(n \log n)$ time, $O(1)$ extra space

Heapsort: Alternate version

- Uses a min-heap (instead of a max-heap)
- Output items in sorted order rather than storing them back in the array

```
def heapsort(A,n):
    heapify(A,n) // Form min heap
    for k = 1 to n:
        x = ExtractMin(A)
        output(x)
```

- Same analysis as previous version: $O(n \log n)$ time, $O(1)$ extra space
- If we stop after computing the first k entries, total work is

$$
O(n+k \log n)
$$

Comparison-based sorts: Summary/Comparison

Comparison-based sorts: Summary/Comparison

Sort	Worst-case Time	Storage Requirement	Remarks
Insertion Sort	$O\left(n^{2}\right)$	In-place	Good if input is almost sorted.
QuickSort	$O\left(n^{2}\right)$	$O(\log n)$ extra for stack	$O(n \log n)$ expected time.
Mergesort	$O(n \log n)$	$O(n)$ extra for merge	
Heapsort	$O(n \log n)$	In-place	Can output k smallest in sorted order in $O(n+k \log n)$ time.

Stable sorting

Stable sorting

A sort is stable if keys having the same value appear in the same order in the output array as they do in the input array.

Stable sorting

A sort is stable if keys having the same value appear in the same order in the output array as they do in the input array.

$$
\left[\begin{array}{llll}
3 & 2 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 2 & 2
\end{array}\right]: \text { Stable }
$$

Stable sorting

A sort is stable if keys having the same value appear in the same order in the output array as they do in the input array.
$\left[\begin{array}{llll}3 & 2 & 1 & 2\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]$: Stable
$\left[\begin{array}{llll}3 & 2 & 1 & 2\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]$: Not Stable

Stable sorting

A sort is stable if keys having the same value appear in the same order in the output array as they do in the input array.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
3 & 2 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 2 & 3
\end{array}\right]: \text { Stable }} \\
& {\left[\begin{array}{llll}
3 & 2 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 2 & 2 & 3
\end{array}\right]: \text { Not Stable }}
\end{aligned}
$$

Sort	Stable (without special care)?
Insertion Sort	Yes
Quick- Sort	No
Merge- Sort	Yes (as described here)
Heap- Sort	No

Lower bound on comparison-based sorting

Lower bound on comparison-based sorting

- Based on Decision Tree model.

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).

Example: Decision tree for sorting 3 items

CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).
- Each leaf node is a permutation of $0, \ldots n-1$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).
- Each leaf node is a permutation of $0, \ldots n-1$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).
- Each leaf node is a permutation of $0, \ldots n-1$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).
- Each leaf node is a permutation of $0, \ldots n-1$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).
- Each leaf node is a permutation of $0, \ldots n-1$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).
- Each leaf node is a permutation of $0, \ldots n-1$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).
- Each leaf node is a permutation of $0, \ldots n-1$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting

- Based on Decision Tree model.
- Any algorithm that sorts a list or array of size n using comparisons can be modeled as a decision tree:
- Each internal node is labeled $i: j$, representing a comparison between $L[i]$ and $L[j]$.
- The left (respectively, right) of a node labeled $i: j$ describes for what happens if $L[i]<L[j]$ (respectively, $L[i]>L[j]$).
- Each leaf node is a permutation of $0, \ldots n-1$.

Example: Decision tree for sorting 3 items

Lower bound on comparison-based sorting (continued)

Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can be modeled by a decision tree with at least n ! leaf nodes.

Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can be modeled by a decision tree with at least n ! leaf nodes.
2. Since the decision tree is a binary tree with n ! leaves, the depth is at least $\lceil\lg n!\rceil$.

Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can be modeled by a decision tree with at least n ! leaf nodes.
2. Since the decision tree is a binary tree with n ! leaves, the depth is at least $\lceil\lg n!\rceil$.
3. The worst-case number of comparisons for the algorithm is the depth of the decision tree.

Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can be modeled by a decision tree with at least n ! leaf nodes.
2. Since the decision tree is a binary tree with n ! leaves, the depth is at least $\lceil\lg n!\rceil$.
3. The worst-case number of comparisons for the algorithm is the depth of the decision tree.
4. $\lg n!=\Omega(n \log n)$ (proof on next slide)

Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can be modeled by a decision tree with at least n ! leaf nodes.
2. Since the decision tree is a binary tree with n ! leaves, the depth is at least $\lceil\lg n!\rceil$.
3. The worst-case number of comparisons for the algorithm is the depth of the decision tree.
4. $\lg n!=\Omega(n \log n)$ (proof on next slide)

Fact \#2 and Fact \#3 imply an exact bound:

Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can be modeled by a decision tree with at least n ! leaf nodes.
2. Since the decision tree is a binary tree with n ! leaves, the depth is at least $\lceil\lg n!\rceil$.
3. The worst-case number of comparisons for the algorithm is the depth of the decision tree.
4. $\lg n!=\Omega(n \log n)$ (proof on next slide)

Fact \#2 and Fact \#3 imply an exact bound:
Any comparison-based algorithm for sorting a list of size n must perform at least $\lceil\lg n!\rceil$ comparisons in the worst case.

Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can be modeled by a decision tree with at least n ! leaf nodes.
2. Since the decision tree is a binary tree with n ! leaves, the depth is at least $\lceil\lg n!\rceil$.
3. The worst-case number of comparisons for the algorithm is the depth of the decision tree.
4. $\lg n!=\Omega(n \log n)$ (proof on next slide)

Fact \#2 and Fact \#3 imply an exact bound:
Any comparison-based algorithm for sorting a list of size n must perform at least $\lceil\lg n!\rceil$ comparisons in the worst case.

The previous statement and Fact \#4 imply an asymptotic bound:

Lower bound on comparison-based sorting (continued)

1. Any comparison-based algorithm for sorting a list of size n can be modeled by a decision tree with at least n ! leaf nodes.
2. Since the decision tree is a binary tree with n ! leaves, the depth is at least $\lceil\lg n!\rceil$.
3. The worst-case number of comparisons for the algorithm is the depth of the decision tree.
4. $\lg n!=\Omega(n \log n)$ (proof on next slide)

Fact \#2 and Fact \#3 imply an exact bound:
Any comparison-based algorithm for sorting a list of size n must perform at least $\lceil\lg n!\rceil$ comparisons in the worst case.

The previous statement and Fact \#4 imply an asymptotic bound:
Any comparison-based algorithm for sorting a list of size n must perform at least $\Omega(n \log n)$ comparisons in the worst case.

Lower bound on comparison-based sorting (continued)

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

The first $\lceil n / 2\rceil$ terms in the product are all $\geq\left\lceil\frac{n}{2}\right\rceil$.

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

The first $\lceil n / 2\rceil$ terms in the product are all $\geq\left\lceil\frac{n}{2}\right\rceil$.
This implies:

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

The first $\lceil n / 2\rceil$ terms in the product are all $\geq\left\lceil\frac{n}{2}\right\rceil$.
This implies:

$$
n!\geq\left\lceil\frac{n}{2}\right\rceil^{\left\lceil\frac{n}{2}\right\rceil}
$$

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

The first $\lceil n / 2\rceil$ terms in the product are all $\geq\left\lceil\frac{n}{2}\right\rceil$.
This implies:

$$
n!\geq\left\lceil\frac{n}{2}\right\rceil^{\left\lceil\frac{n}{2}\right\rceil} \geq\left(\frac{n}{2}\right)^{\frac{n}{2}}
$$

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

The first $\lceil n / 2\rceil$ terms in the product are all $\geq\left\lceil\frac{n}{2}\right\rceil$.
This implies:

$$
n!\geq\left\lceil\frac{n}{2}\right\rceil^{\left\lceil\frac{n}{2}\right\rceil} \geq\left(\frac{n}{2}\right)^{\frac{n}{2}}
$$

Take $\log _{2}$ of both sides:

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

The first $\lceil n / 2\rceil$ terms in the product are all $\geq\left\lceil\frac{n}{2}\right\rceil$.
This implies:

$$
n!\geq\left\lceil\frac{n}{2}\right\rceil^{\left\lceil\frac{n}{2}\right\rceil} \geq\left(\frac{n}{2}\right)^{\frac{n}{2}}
$$

Take $\log _{2}$ of both sides:

$$
\lg n!\geq\left(\frac{n}{2}\right) \lg \left(\frac{n}{2}\right)
$$

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

The first $\lceil n / 2\rceil$ terms in the product are all $\geq\left\lceil\frac{n}{2}\right\rceil$.
This implies:

$$
n!\geq\left\lceil\frac{n}{2}\right\rceil^{\left\lceil\frac{n}{2}\right\rceil} \geq\left(\frac{n}{2}\right)^{\frac{n}{2}}
$$

Take $\log _{2}$ of both sides:

$$
\lg n!\geq\left(\frac{n}{2}\right) \lg \left(\frac{n}{2}\right)=\left(\frac{n}{2}\right)(\lg n-1)
$$

Lower bound on comparison-based sorting (continued)

Proof that $\lg n!=\Omega(n \log n)$:

$$
n!=n \cdot(n-1) \cdot(n-3) \cdots 2 \cdot 1
$$

The first $\lceil n / 2\rceil$ terms in the product are all $\geq\left\lceil\frac{n}{2}\right\rceil$.
This implies:

$$
n!\geq\left\lceil\frac{n}{2}\right\rceil^{\left\lceil\frac{n}{2}\right\rceil} \geq\left(\frac{n}{2}\right)^{\frac{n}{2}}
$$

Take $\log _{2}$ of both sides:

$$
\lg n!\geq\left(\frac{n}{2}\right) \lg \left(\frac{n}{2}\right)=\left(\frac{n}{2}\right)(\lg n-1)=\Omega(n \lg n)
$$

Asymptotic optimality of MergeSort and HeapSort

We have just shown:

Asymptotic optimality of MergeSort and HeapSort

We have just shown:
Any comparison-based algorithm for sorting a list of size n must perform at least $\Omega(n \log n)$ comparisons in the worst case.

Asymptotic optimality of MergeSort and HeapSort

We have just shown:
Any comparison-based algorithm for sorting a list of size n must perform at least $\Omega(n \log n)$ comparisons in the worst case.

Earlier we showed:

Asymptotic optimality of MergeSort and HeapSort

We have just shown:
Any comparison-based algorithm for sorting a list of size n must perform at least $\Omega(n \log n)$ comparisons in the worst case.

Earlier we showed:
The worst-case running time of MergeSort and HeapSort on an input of size n is $O(n \log n)$.

Asymptotic optimality of MergeSort and HeapSort

We have just shown:
Any comparison-based algorithm for sorting a list of size n must perform at least $\Omega(n \log n)$ comparisons in the worst case.

Earlier we showed:
The worst-case running time of MergeSort and HeapSort on an input of size n is $O(n \log n)$.

Conclusions:

Asymptotic optimality of MergeSort and HeapSort

We have just shown:
Any comparison-based algorithm for sorting a list of size n must perform at least $\Omega(n \log n)$ comparisons in the worst case.

Earlier we showed:
The worst-case running time of MergeSort and HeapSort on an input of size n is $O(n \log n)$.

Conclusions:

1. MergeSort and HeapSort are asymptotically optimal.

Asymptotic optimality of MergeSort and HeapSort

We have just shown:
Any comparison-based algorithm for sorting a list of size n must perform at least $\Omega(n \log n)$ comparisons in the worst case.

Earlier we showed:
The worst-case running time of MergeSort and HeapSort on an input of size n is $O(n \log n)$.

Conclusions:

1. MergeSort and HeapSort are asymptotically optimal.
2. The lower bound is asymptotically tight (i.e., cannot be improved asymptotically)
